Formular Spline

This tool will create a formular spline. Select the Formular Spline tool on the left toolbar.
- 1.Click with your left mouse button on the position where the spline should be centered.
- 2.Depence will create the Spline on this position.
x(t), y(t), z(t) | Equations on (t) for each Axis. |
t-Min, t-Max | Specified the definition range. |
Samples | Amount of interpolation points. |
+ - * / ( ) % | Basic mathematical operators. |
Abs(a) | Returns the absolute value of a specified number. |
Acos(a) | Returns the angle whose cosine is the specified number. |
Asin(a) | Returns the angle whose sine is the specified number. |
Atan(a) | Returns the angle whose tangent is the specified number. |
Ceiling(a) | Returns the smallest integer greater or equal to the specified number. |
Cos(a) | Returns the cosine of the specified angle. |
Exp(a) | Returns e raised to the specified power. |
Floor(a) | Returns the largest integer less than or equal to the specified number. |
Log(a, b) | Returns the logarithm of the specified number. |
Log10(a) | Returns the base 10 logarithm of a specified number. |
Max(a, b) | Returns the larger of two specified numbers. |
Min(a, b) | Returns the smaller of two numbers. |
Pow(a, b) | Returns a specified number raised to the specified power. |
Round(a) | Rounds a value to the nearest integer or specified number of decimal places. |
Sign(a) | Returns a value indicating the sign of a number. |
Sin(a) | Returns the sine of the specified angle. |
Sqrt(a) | Returns the square root of a specified number. |
Tan(a) | Returns the tangent of the specified angle. |
Truncate(a) | Calculates the integral part of a number. |
if(condition, true-part, false-part) | Returns a value based on a condition
Example: if(t > 0, 50, -50) |

X(t) = (100 * Cos(t * PI)) / t
Y(t) = 0.0
Z(t) = (100 * Sin(t*PI)) / t
t-Min = 1.0
t-Max = 5.0
Samples = 50

X(t) = (90 +30) * Cos(t * PI) - 40 *
Cos(((90 + 30) / 30) * t * PI)
Y(t) = 0.0
Z(t) = (90 + 30) * Sin(t * PI) - 40 *
Sin(((90 + 30) / 30) * t * PI)
t-Min = 1.0
t-Max = 3.0
Samples = 65

X(t) = 100 * t
Y(t) = 0.0
Z(t) = if(t % 1.0 > 0.5, 0.0, 100.0)
t-Min = 0.0
t-Max = 5.0
Samples = 80
Last modified 4mo ago